Parsing Direct3D shader bytecode


In this post, I will discuss the Direct3D shader bytecode format, and how to parse it without using the Direct3D API. This is basically a write-up of SlimShader, a .NET library that can read in Direct3D 10 / 11 HLSL bytecode and give you back the shader instructions and metadata as nicely structured objects.

Warning: niche content ahead

This topic is not for everyone. More accurately, very few people will ever need to know any of this. The details of Direct3D’s shader bytecode format are really only useful to Microsoft and their hardware partners.

So why am I interested in understanding how HLSL shader bytecode works? The simple answer is: because it’s there.

The longer answer is: I got started on all of this while writing a software rasteriser - Rasterizr - and I wanted to use real HLSL shaders in the software rasterisation pipeline. I didn’t want to take a dependency on Direct3D - so instead, I figured out how to disassemble compiled HLSL shaders back to assembly instructions, and then I wrote a virtual machine that can execute these assembly instructions entirely on the CPU. I implemented both an interpreter and a JIT compiler (the JIT compiler actually has pretty good performance, although obviously it’s still orders of magnitude slower than a GPU). Admittedly, that was a huge amount of effort for what is mostly a pointless (albeit fun) project. Here’s a screenshot of the debugging GUI I built for Rasterizr.

I intentionally modelled Rasterizr’s API (and debugging tools) on Direct3D - I wanted Rasterizr to serve as an educational tool, to help me (and perhaps others) understand what’s going on under the bonnet (or “hood”, if you speak Simplified English) in Direct3D.

Something vaguely useful did come out of my work on SlimShader - HlslUnit, a unit testing library for HLSL code.

If you’re still reading, I’ll assume you’re okay with the niche-ness of this topic. Let’s get started.

HLSL and Shader Model 4 / 5 assembly

The following code is a simple, but complete, HLSL vertex shader. We’ll be following this shader through compilation to binary bytecode. Then we’ll figure out how to parse the resulting binary, and extract the assembly instructions and metadata back out.

(A brief aside: we’ll stop our journey at bytecode; GPUs often have their own intermediate and assembly languages, but that differs from GPU to GPU and is lower-level than we’ll get into here.)

struct VertexShaderInput
    float3 pos : POSITION;
    float2 tex : TEXCOORD;

struct PixelShaderInput
    float4 pos : SV_POSITION;
    float2 tex : TEXCOORD;

float4x4 WorldViewProjection;

PixelShaderInput VS(VertexShaderInput input)
    PixelShaderInput output;

    output.pos = mul(float4(input.pos, 1), WorldViewProjection);
    output.tex = input.tex;

    return output;

Now let’s compile this shader using fxc.exe, the HLSL shader compiler:

fxc.exe /Fo TestShader.o /T vs_4_0 /E VS /nologo TestShader.hlsl

The /T parameter sets the target profile to vs_4_0, and the /E parameter sets the entry point function to VS.

Running that will compile the shader into TestShader.o, a binary file. This is the file that we’re going to be delving into.

Parsing shader bytecode

TestShader.o contains the compiled shader, and it’s what you’d use in your game when calling CreateVertexShader or CreatePixelShader.

Direct3D has a D3DDisassemble function which takes this compiled shader (as a byte array), and disassembles it back to the assembly instructions. Almost all of the time, that’s what you should use, if that’s what you want to do.

But that’s not what we want to do; we want to understand how this file is structured, and parse it ourselves. Let’s delve into this compiled shader file. Since this is a binary file, we’ll need a tool that helps us view binary files. I use Binary Viewer.

This is what Binary Viewer looks like after I open TestShader.o:

I’ve made the assumption that if you’ve got this far, you’re familiar with binary files - if not, have a look at Wikipedia’s entry on binary files.

Binary Viewer shows the raw bytes on the left, and the ASCII representation of those bytes on the right. Not all byte values are valid ASCII, which is why most of the values on the right use the placeholder. But the ASCII values that are present are interesting.

At the very beginning of the file, the first four bytes are 0x44 0x58 0x42 0x43. Those are the ASCII codes for the string “DXBC”. It turns out that every compiled HLSL shader starts with these four bytes. Looking at the rest of the file, we can see a number of bits of text that look relevant - we’ll get to those soon.

If you compile enough different shaders, and compare / contrast the resulting binaries, you see some patterns start to emerge. That’s the key to understanding how binary files like these are structured (unless of course someone helpfully provides you with the spec, but where would the fun be in that?).

It turns out that compiled HLSL shaders are composed of a header, followed by a number of chunks. This is hinted at by the ASCII strings at the start of each chunk - in this case “RDEF”, “ISGN”, “OSGN”, “SHDR”, and “STAT”. You can see the chunks more clearly if I overlay each one with a different colour:

The uncoloured section at the beginning of the file is the header. The header contains information we’ll need to successfully parse the file, such as the location of the start of each chunk.

Here’s the structure of the header, including the specific values for our example shader. In the following tables, “byte offset” always means from the start of the file.

Byte offset Value Description
0-3 “DXBC” Always the string “DXBC”
4-19 1331666272
Checksum; the HLSL compiler uses a private algorithm to compute this
20-23 1 Always the number “1” - I don’t know why this exists, perhaps as a sanity check
24-27 848 Total size, in bytes, of the compiled shader, including the header
28-31 5 Chunk count

Next up is the chunk index. For each chunk, you get the offset (in bytes) of the start of that chunk. Our example shader has 5 chunks, so we have 5 entries in the chunk index. To aid in understanding, I’ve added the chunk type as well, but this isn’t part of the chunk index; the chunk type is declared at the start of each chunk.

Byte offset Byte address of start of chunk Chunk type
32-35 52 RDEF
36-39 268 ISGN
40-43 352 OSGN
44-47 440 SHDR
48-51 724 STAT

I keep using the word “chunk”, but what exactly does that mean? Chunks are used to break the data in the compiled shader into logical parts. Direct3D (probably) doesn’t always need to load every chunk; I’d guess, for example, that it doesn’t load the STAT chunk unless you use shader reflection APIs. Here are all the chunk types that I’ve seen:

Chunk type Description
ICFE Interface. Describes any interfaces, and implementing classes, present in the source HLSL.
ISGN Input signature
OSG5 Output signature (SM5)
OSGN Output signature
PCSG Patch constant signature
RDEF Resource definition. Describes constant buffers and resource bindings.
SDGB Shader debugging info (old-style)
SFI0 Not really sure… it stores a value that indicates whether double-precision floating point operations are enabled, but I don’t know why that needs to be in its own chunk
SHDR Shader (SM4). The shader itself.
SHEX Shader (SM5)
SPDB Shader debugging info (new-style)
STAT Statistics. Useful statistics about the shader, such as instruction count, declaration count, etc.

SlimShader exposes all of the data in all of these chunks (except the debugging chunks) through a nice friendly object model. Direct3D exposes some of this data through the ID3D11ShaderReflection interface.

I figured out a lot of this stuff the hard way: I compiled multiple shaders, and looked for similarities and differences in the resulting binaries. I also got help from:

  • The Nuclex Framework, in particular the HlslShaderReflector class, was very helpful when figuring out the RDEF, ISGN and OSGN chunks.
  • The Wine project, in particular Wine’s shader reflection code, had some good tips for decoding the STAT chunk.
  • For the SHDR chunk, I mostly just used D3D11TokenizedProgramFormat.hpp, a header file that comes with the Windows Driver Kit (WDK).

Now that we’ve got an overview of how the file is structured, let’s turn our attention to parsing the individual chunks. I’m going to describe in detail the 5 chunks in our example compiled shader. If you want more details on the other chunk types, the SlimShader source code is a good place to start.

RDEF chunk

The first chunk in our example compiled shader is of type RDEF, or “resource definition”. Resource definition chunks are split into two main parts:

  1. Constant buffer descriptions. In our example, we have a single constant buffer named $Globals, which contains a single variable named WorldViewProjection, which is a 4x4 matrix.
  2. Resource bindings. In our example, we only have a single constant buffer, but this is where you would find bindings for textures, samplers, structured buffers, etc.

Looking at the chunk index table above, we see that the byte address of the start of the first chunk is 52. Using Binary Viewer, we start looking at the byte values starting at index 52. (If you were doing this from scratch, you’d have to painstakingly compare / contrast shader binaries until you could guess at what each value means.) Note that most of these values are stored in the binary file as 32-bit uints, so we mostly, but not always, need to read 4 bytes at a time.

Byte offset Value Description
52-55 “RDEF” Indicates that this is a RDEF (resource definition) chunk
56-59 208 Length of the chunk, in bytes
60-63 1 Constant buffer count
64-67 72 Byte offset (from start of chunk data, after chunk type and chunk length) to first constant buffer description
68-71 1 Resource binding count
72-75 28 Byte offset (from start of chunk data) to first resource binding description
76 0 Minor version number
77 4 Major version number
78-79 0xFFFE Program type. “0xFFFE” means vertex shader.
80-83 256 Flags. “256” means “NoPreshader”.
84-87 156 Byte offset (from start of chunk data) to “creator” string

In this blog post, I’m only describing Shader Model 4.0 shaders. Shader Model 5.0 shaders contain some additional data; SlimShader supports both SM 4.0 and SM 5.0.

A number of values in the data that follows are byte offsets from the “start of chunk data”. The start of the chunk data is the byte immediately following the chunk length. In this RDEF chunk, that is the byte at offset 60 from the beginning of the file.

Now we’ve parsed the “header” portion of the RDEF chunk. It’s time to parse the “body”, which is composed of constant buffer and resource binding descriptions. We know from the header that the first constant buffer description can be found at byte address 60 + 72 = 135 (60 is the address of the start of the chunk data, and 72 is the offset to the first constant buffer). So let’s see what’s in the constant buffer description:

Byte offset Value Description
132-135 60 Byte offset (from start of chunk data) to constant buffer name
136-139 1 Variable count
140-143 96 Byte offset (from start of chunk data) to first variable description
144-147 64 Size of the constant buffer, in bytes
148-151 0 Flags, based on D3D_SHADER_CBUFFER_FLAGS
152-155 0 Constant buffer type, based on D3D11_CBUFFER_TYPE

According to the table above, the constant buffer name will be found at 60 + 60 = 120. Strings are null-terminated, so we keep reading until we reach a 0:

Byte offset Value Description
120 “$Globals” Constant buffer name

Now let’s parse the variables for this constant buffer. In this case, there is only one constant buffer, which contains one variable. We know from the table above that the variable description starts at 60 + 96 = 156.

Byte offset Value Description
156-159 120 Byte offset (from start of chunk data) to variable name
160-163 0 Offset from start of constant buffer (in bytes)
164-167 64 Variable size (in bytes)
168-171 2 Variable flags, based on D3D10_SHADER_VARIABLE_FLAGS. 2 means this variable is used in the shader.
172-175 140 Byte offset (from start of chunk data) to variable type
176-179 0 Byte offset (from start of chunk data) to default value. “0” means there isn’t a default value.

Let’s parse the variable name, at address 60 + 120 = 180:

Byte offset Value Description
180 “WorldViewProjection” Variable name

And then the variable type, at address 60 + 140 = 200:

Byte offset Value Description
200-201 3 Variable class, based on D3D10_SHADER_VARIABLE_CLASS. “3” means the variable is a column-major matrix.
202-203 3 Variable type, based on D3D10_SHADER_VARIABLE_TYPE. “3” means the variable is a floating-point number.
204-205 4 Number of rows in matrix-type variables
206-207 4 Number of columns in matrix-type variables
208-209 0 Number of elements in array-type variables
210-211 0 Number of members in structure-type variables
212-213 0 Byte offset (from start of chunk data) to first member

Whew! As you can see, there are a lot of different structures contained in HLSL shader binaries. And this is just the RDEF chunk type! We’re nearly there though. Next, let’s parse the resource binding description. Going back to the first table in this section, we see that the first resource binding description can be found at address 60 + 28 = 88.

Byte offset Value Description
88-91 60 Byte offset (from start of chunk data) to resource binding name
92-95 0 Shader input type. “0” means cbuffer.
96-99 0 Resource return type. “0” means not applicable.
100-103 0 Resource view dimension. “0” means not applicable.
104-107 0 Number of samples
108-111 0 Bind point
112-115 1 Bind count
116-119 0 Shader input flags

One interesting thing to note is that the data is very efficiently packed in the binary file. There are very few, if any, wasted bytes. You would expect nothing less, but still, it’s nice to see this attention to detail firsthand.

We have one last thing to parse from the RDEF chunk - the “creator”. We can find this at address 60 + 156 = 216:

Byte offset Value Description
216 “Microsoft (R) HLSL Shader Compiler 6.3.9600.16384” Creator

After all of that work, we know enough to reconstruct this line from our original HLSL code:

float4x4 WorldViewProjection;

But we also know a bit more than that; we know that:

  • the HLSL compiler automatically put this variable into a cbuffer called $Globals
  • it is a column-major matrix
  • it is referenced in the shader

ISGN chunk

ISGN chunks define the input signature for a shader. For a vertex shader like this one, the input signature describes the shape of the data coming from the application.

ISGN chunks are much simpler than RDEF chunks. Here’s how the ISGN header is structured:

Byte offset Value Description
268-271 “ISGN” Indicates that this is a RDEF (resource definition) chunk
272-275 76 Length of the chunk, in bytes
276-279 2 Element count
280-283 8 I don’t know what this is used for…

The element data immediately follows the ISGN header. We have 2 elements, with these values:

Byte offset Value Description
284-287 56 Byte offset (from start of chunk data) to element name
288-291 0 Semantic index
292-295 0 System value type
296-299 3 Component type. “3” means floating-point
300-303 0 Register
304 7 Mask. “7” means XYZ, which means this is a 3-component vector.
305 7 Read-write mask. This is the same as the mask, but it is also possible for not all components to actually be used by the shader.
Byte offset Value Description
332 “POSITION” Element name
Byte offset Value Description
308-311 65 Byte offset (from start of chunk data) to element name
312-315 0 Semantic index
316-319 0 System value type
320-323 3 Component type. “3” means floating-point
324-327 1 Register
328 3 Mask. “3” means XY, which means this is a 2-component vector.
329 3 Read-write mask
Byte offset Value Description
341 “TEXCOORD” Element name

And that’s it! The input signature chunk tells us the structure of data coming into the shader:

  • A float3 parameter whose semantic is POSITION, assigned to register 0
  • A float2 parameter whose semantic is TEXCOORD, assigned to register 1

Compare this to the original HLSL:

struct VertexShaderInput
    float3 pos : POSITION;
    float2 tex : TEXCOORD;

We’ve lost some information - such as the name of the struct, and the names of the struct fields. Those names aren’t needed by the GPU. Instead, the HLSL compiler has assigned register numbers to these two values.

OSGN chunk

OSGN chunks define the output signature for a shader. For a vertex shader like this, the output signature describes the shape of the data being output from the vertex shader to the pixel shader (or geometry shader, or hull shader).

Happily, OSGN chunks are structured in exactly the same way as ISGN chunks. So I’ll skip to the end and show you the parsed information. The output signature for this example shader is:

  • A float4 parameter whose semantic is SV_POSITION, assigned to register 0
  • A float2 parameter whose semantic is TEXCOORD, assigned to register 1

Again, compare that to the original HLSL:

struct PixelShaderInput
    float4 pos : SV_POSITION;
    float2 tex : TEXCOORD;

We’ve kept the important information, and the HLSL compiler has assigned registers to each value in the output.

SHDR chunk

The SHDR chunk is, as you might guess, where the actual shader can be found. The other chunks are basically metadata; the SHDR chunk is where you find the declarations and instructions that make up the shader itself.

It is, by far, the most complicated chunk to parse. But fortunately, it’s also the (only) chunk type that is publicly documented. If you install the Windows Driver Kit (WDK), you get a file that describes the binary format in some detail, usually located here:

C:\Program Files (x86)\Windows Kits\10\Include\10.0.10240.0\um\d3d11TokenizedProgramFormat.hpp

Because the documentation for the binary format of the SHDR chunk is readily available, I won’t go into too much detail.

Briefly, the SHDR chunk, in common with the other chunk types, is composed of a header and a body. The header is structured as follows:

Byte offset Value Description
440-443 “SHDR” Indicates that this is a SHDR (shader) chunk
444-447 276 Length of the chunk, in bytes
448 (low 4 bits) 0 Minor version number
448 (high 4 bits) 4 Major version number
450-451 1 Program type. “1” means vertex shader.
452-455 69 Number of DWORDs in the chunk

After the header come a sequence of “opcodes”. Opcodes are the binary representation of shader assembly instructions. You can see the full list of Shader Model 5 assembly instructions here. Opcodes represent both declarations (i.e. texture declarations, constant buffer declarations, etc.) and instructions (i.e. add, multiply, etc.).

Each opcode has its own binary structure, but there are some commonalities. Here’s the section of d3d11TokenizedProgramFormat.hpp that tells us how to read the first token of each opcode.

// ----------------------------------------------------------------------------
// Opcode Format (OpcodeToken0)
// [10:00] D3D10_SB_OPCODE_TYPE
// if( [10:00] == D3D10_SB_OPCODE_CUSTOMDATA )
// {
//    Token starts a custom-data block.  See "Custom-Data Block Format".
// }
// else // standard opcode token
// {
//    [23:11] Opcode-Specific Controls
//    [30:24] Instruction length in DWORDs including the opcode token.
//    [31]    0 normally. 1 if extended operand definition, meaning next DWORD
//            contains extended opcode token.
// }
// ----------------------------------------------------------------------------

So every opcode stores the opcode type in the first 10 bits. Once you’ve read the type, you use that to know how to parse the rest of the opcode.

As an example, let’s look at the first opcode from our example shader.

Byte offset Value Description
456-459 (bits 0 to 10) 89 Opcode type
456-459 (bits 24 to 30) 4 Opcode length
456-459 (bit 31) 0 1 if opcode is “extended”, otherwise 0

Looking at D3D10_SB_OPCODE_TYPE in d3d11TokenizedProgramFormat.hpp, we see that opcode type 89 equates to D3D10_SB_OPCODE_DCL_CONSTANT_BUFFER. So then we look further down the file to find how constant buffer declaration opcodes are structured:

// ----------------------------------------------------------------------------
// Constant Buffer Declaration
// OpcodeToken0:
// [23:12] Ignored, 0
// [30:24] Instruction length in DWORDs including the opcode token.
// [31]    0 normally. 1 if extended operand definition, meaning next DWORD
//         contains extended operand description.  This dcl is currently not
//         extended.
// OpcodeToken0 is followed by 1 operand:
// (1) Operand, starting with OperandToken0, defining which CB slot (cb#[size])
//     is being declared. (operand type: D3D10_SB_OPERAND_TYPE_CONSTANT_BUFFER)
//     The indexing dimension for the register must be 
//     D3D10_SB_OPERAND_INDEX_DIMENSION_2D, where the first index specifies
//     which cb#[] is being declared, and the second (array) index specifies the size 
//     of the buffer, as a count of 32-bit*4 elements.  (As opposed to when the 
//     cb#[] is used in shader instructions, and the array index represents which 
//     location in the constant buffer is being referenced.)
//     If the size is specified as 0, the CB size is not known (any size CB
//     can be bound to the slot).
// The order of constant buffer declarations in a shader indicates their
// relative priority from highest to lowest (hint to driver).
// ----------------------------------------------------------------------------

So for a constant buffer declaration, after the initial opcode token, we can expect to find a single operand, which defines which constant buffer slot is being declared. Operands are actually fairly complicated to parse. On the bright side, there’s a standard operand structure shared across all opcodes. But because it’s too hard (and I’m lazy), I’ll just point you at the Operand source code in SlimShader.

If we were to parse the operand, we’d be able to extract this assembly instruction:

dcl_constantbuffer cb0[4], immediateIndexed

We can then continue to parse all the remaining opcodes in the shader chunk. When writing SlimShader, I went through all the opcodes documented in d3d11TokenizedProgramFormat.hpp, and wrote the parsing logic for each one. For our example shader, we’d end up with these assembly instructions:

dcl_constantbuffer cb0[4], immediateIndexed
dcl_input v1.xy
dcl_output_siv o0.xyzw, position
dcl_output o1.xy
dcl_temps 1
mov, v0.xyzx
mov r0.w, l(1.000000)
dp4 o0.x, r0.xyzw, cb0[0].xyzw
dp4 o0.y, r0.xyzw, cb0[1].xyzw
dp4 o0.z, r0.xyzw, cb0[2].xyzw
dp4 o0.w, r0.xyzw, cb0[3].xyzw
mov o1.xy, v1.xyxx

There are 6 declarations, and 8 instructions. When you use a shader in Direct3D, these assembly instructions are parsed from the bytecode (much like we’re doing here), and sent to the GPU. Somewhere along the way (presumably in the GPU driver), the Direct3D assembly instructions will be compiled (again) into the GPU’s own assembly language, which is lower-level and hardware-specific.

In older versions of Direct3D, you could author shaders using assembly instructions, but that hasn’t been possible for a while. These days you need to use HLSL (which is fine by me, I have enough trouble reading assembly code, let alone writing it).

STAT chunk

The STAT chunk is the least interesting chunk type (“interesting” might be a poor choice of word in a topic as dry as this one, but work with me). I don’t imagine it’s used in the Direct3D runtime, unless you use the ID3D11ShaderReflection interface.

Here’s the data in the STAT chunk in our example shader. I’ve guessed at what some of these values mean, and some I just don’t know, despite comparing and contrasting multiple shader binaries.

Byte offset Value Description
724-727 “STAT” Indicates that this is a STAT (statistics) chunk
728-731 116 Length of the chunk, in bytes
732-735 8 Instruction count
736-739 1 Temp register count
740-743 0 Define count
744-747 4 Declaration count
748-751 4 Float instruction count
752-755 0 Int instruction count
756-759 0 Uint instruction count
760-763 1 Static flow control count
764-767 0 Dynamic flow control count
768-771 0 Macro instruction count - maybe? I guessed this
772-775 0 Temp array count
776-779 0 Array instruction count
780-783 0 Cut instruction count
784-787 0 Emit instruction count
788-791 0 Texture normal instructions
792-795 0 Texture load instructions
796-799 0 Texture comparison instructions
800-803 0 Texture bias instructions
804-807 0 Texture gradient instructions
808-811 3 Mov instruction count
812-815 0 Movc instruction count
816-819 0 Conversion instruction count
820-823 0 ? - No idea…
824-827 0 Input primitive for geometry shaders
828-831 0 Primitive topology for geometry shaders
832-835 0 Max output vertex count for geometry shaders
836-839 0 ? - No idea…
840-843 0 ? - No idea…
844-847 0 1 for sample frequency shader, otherwise 0

This data is exposed in Direct3D through a combination of D3D11_SHADER_DESC and ID3D11ShaderReflection methods.

Other chunk types

There are several other chunk types not found in our example shader. The other chunk types supported by SlimShader are:


That was pretty heavy going! But I didn’t think it was worth writing this blog post without going fairly deep into the details. If you found it useful, or have questions, or can fill in any of the gaps in my knowledge, please leave a comment!

I hope to write a follow-up post describing how I used this bytecode parser to build a virtual machine that can execute Direct3D bytecode entirely on the CPU, in managed code. Stay tuned!